With the knowledge of the syndromes Sa,b, 0a,b q-2, the exact error values cannot be determined by using the conventional (q-1)2-point discrete Fourier transform in the decoding of a plane algebraic-geometric code over GF(q). In this letter, the inverse q-point 1-dimensional and q2-point 2-dimensional affine Fourier transform over GF(q) are presented to be used to retrieve the actual error values, but it requires much computation efforts. For saving computation complexity, a modification of the affine Fourier transform is derived by using the property of the rational points of the plane Hermitian curve. The modified transform, which has almost the same computation complexity of the conventional discrete Fourier transform, requires the knowledge of syndromes Sa,b, 0 a,b q-2, and three more extended syndromes Sq-1,q-1, S0,q-1, Sq-1,0.
With the development of global navigation satellite systems (GNSS), the interference among global navigation satellite systems, known as the radio frequency compatibility problem, has become a matter of great concern to system providers and user communities. The acceptable compatibility threshold should be determined in the radio frequency compatibility assessment process. However, there is no common standard for the acceptable threshold in the radio frequency compatibility assessment. This paper firstly introduces the comprehensive radio frequency compatibility methodology combining the spectral separation coefficient (SSC) and code tracking spectral sensitivity coefficient (CT_SSC). Then, a method for determination of the acceptable compatibility threshold is proposed. The proposed method considers the receiver processing phase including acquisition, code and carrier tracking and data demodulation. Simulations accounting for the interference effects are carried out at each time step and every place on earth. The simulations mainly consider the signals of GPS, Galileo and BeiDou Navigation Satellite System (BDS) in the L1 band. Results show that all of the sole systems are compatible with other GNSS systems with respect to a special receiver configuration used in the simulations.
Chou-Chen YANG Ting-Yi CHANG Jian-Wei LI Min-Shiang HWANG
In 2002, Hwang and Yeh proposed some improved schemes to mend several security flaws in the Peyravian-Zunic password transmission scheme and password change scheme. However, this article will point out that there still exist some security flaws in the Hwang-Yeh schemes; at the same time, we shall also propose some improved versions of their schemes.
Wei LIAO Jingjing SHI Jianqing WANG
In this study, we propose a two-step approach to evaluate electromagnetic interference (EMI) with a wearable vital signal sensor. The two-step approach combines a quasi-static electromagnetic (EM) field analysis and an electric circuit analysis, and is applied to the EMI evaluation at frequencies below 1 MHz for our developed wearable electrocardiogram (ECG) to demonstrate its usefulness. The quasi-static EM field analysis gives the common mode voltage coupled from the incident EM field at the ECG sensing electrodes, and the electric circuit analysis quantifies a differential mode voltage at the differential amplifier output of the ECG detection circuit. The differential mode voltage has been shown to come from a conversion from the common mode voltage due to an imbalance between the contact impedances of the two sensing electrodes. When the contact impedance is resistive, the induced differential mode voltage increases with frequency up to 100kHz, and keeps constant after 100kHz, i.e., exhibits a high pass filter characteristic. While when the contact impedance is capacitive, the differential mode voltage exhibits a band pass filter characteristic with the maximum at frequency of around 150kHz. The differential voltage may achieve nearly 1V at the differential amplifier output for an imbalance of 30% under 10V/m plane-wave incident electric field, and completely mask the ECG signal. It is essential to reduce the imbalance as much as possible so as to prevent a significant interference voltage in the amplified ECG signal.
Systolic array implementations of modified Gaussian eliminations for the decoding of an (n, n-2t) RS code, including the Hong-Vetterli algorithm and the FIA proposed by Feng and Tzeng, are designed in this paper. These modified Gaussian eliminations are more easily understanding than the classical Berlekamp-Massey algorithm and, in addition, are efficient to decode RS codes for small e or e <
Hanxu YOU Wei LI Lianqiang LI Jie ZHU
A text-dependent i-vector extraction scheme and a lexicon-based binary vector (L-vector) representation are proposed to improve the performance of text-dependent speaker verification. I-vector and L-vector are used to represent the utterances for enrollment and test. An improved cosine distance kernel is constructed by combining i-vector and L-vector together and is used to distinguish both speaker identity and lexical (or text) diversity with back-end support vector machine (SVM). Experiments are conducted on RSR 2015 Corpus part 1 and part 2, the results indicate that at most 30% improvement can be obtained compared with traditional i-vector baseline.
Test data volume and test power are two major concerns when testing modern large circuits. Recently, selective encoding of scan slices is proposed to compress test data. This encoding technique, unlike many other compression techniques encoding all the bits, only encodes the target-symbol by specifying a single bit index and copying group data. In this paper, we propose an extended selective encoding which presents two new techniques to optimize this method: a flexible grouping strategy, X bits exploitation and filling strategy. Flexible grouping strategy can decrease the number of groups which need to be encoded and improve test data compression ratio. X bits exploitation and filling strategy can exploit a large number of don't care bits to reduce testing power with no compression ratio loss. Experimental results show that the proposed technique needs less test data storage volume and reduces average weighted switching activity by 25.6% and peak weighted switching activity by 9.68% during scan shift compared to selective encoding.
Fengwei LIU Hongzhi ZHAO Ying LIU Youxi TANG
In this paper, we propose a channel-unaware algorithm to suppress the narrowband interference (NBI) for the time synchronization, where multiple antennas are equipped at the receiver. Based on the fact that the characteristics of synchronization signal are different from those of NBI in both the time and spatial domain, the proposed algorithm suppresses the NBI by utilizing the multiple receive antennas in the eigen domain of NBI, where the eigen domain is obtained from the time domain statistical information of NBI. Because time synchronization involves incoherent detection, the proposed algorithm does not use the desired channel information, which is different from the eigen domain interference rejection combining (E-IRC). Simulation results show, compared with the traditional frequency domain NBI suppression technique, the proposed algorithm has about a 2 dB gain under the same probability of detection.
Bo LIU Junzhou LUO Feng SHAN Wei LI Jiahui JIN Xiaojun SHEN
Provisioning multiple paths can improve fault tolerance and transport capability of multi-routing in wireless networks. Disjoint paths can improve the diversity of paths and further reduce the risk of simultaneous link failure and network congestion. In this paper we first address a many-to-one disjoint-path problem (MOND) for multi-path routing in a multi-hop wireless network. The objective of this problem is to maximize the minimum number of disjoint paths of every source to the destination. We prove that it is NP-hard to obtain k disjoint paths for every source when k ≥ 3. To solve this problem efficiently, we propose a heuristic algorithm called TOMAN based on network flow theory. Experimental results demonstrate that it outperforms three related algorithms.
Binzhang FU Yinhe HAN Huawei LI Xiaowei LI
The Network-on-Chip (NoC) is limited by the reliability constraint, which impels us to exploit the fault-tolerant routing. Generally, there are two main design objectives: tolerating more faults and achieving high network performance. To this end, we propose a new multiple-round dimension-order routing (NMR-DOR). Unlike existing solutions, besides the intermediate nodes inter virtual channels (VCs), some turn-legally intermediate nodes inside each VC are also utilized. Hence, more faults are tolerated by those new introduced intermediate nodes without adding extra VCs. Furthermore, unlike the previous solutions where some VCs are prioritized, the NMR-DOR provides a more flexible manner to evenly distribute packets among different VCs. With extensive simulations, we prove that the NMR-DOR maximally saves more than 90% unreachable node pairs blocked by faults in previous solutions, and significantly reduces the packet latency compared with existing solutions.
Yu CHEN Zulie PAN Yuanchao CHEN Yuwei LI
Web application second-order vulnerabilities first inject malicious code into the persistent data stores of the web server and then execute it at later sensitive operations, causing severe impact. Nevertheless, the dynamic features, the complex data propagation, and the inter-state dependencies bring many challenges in discovering such vulnerabilities. To address these challenges, we propose DISOV, a web application property graph (WAPG) based method to discover second-order vulnerabilities. Specifically, DISOV first constructs WAPG to represent data propagation and inter-state dependencies of the web application, which can be further leveraged to find the potential second-order vulnerabilities paths. Then, it leverages fuzz testing to verify the potential vulnerabilities paths. To verify the effectiveness of DISOV, we tested it in 13 popular web applications in real-world and compared with Black Widow, the state-of-the-art web vulnerability scanner. DISOV discovered 43 second-order vulnerabilities, including 23 second-order XSS vulnerabilities, 3 second-order SQL injection vulnerabilities, and 17 second-order RCE vulnerabilities. While Black Widow only discovered 18 second-order XSS vulnerabilities, with none second-order SQL injection vulnerability and second-order RCE vulnerability. In addition, DISOV has found 12 0-day second-order vulnerabilities, demonstrating its effectiveness in practice.
Yu HU Yinhe HAN Xiaowei LI Huawei LI Xiaoqing WEN
LSI testing is critical to guarantee chips are fault-free before they are integrated in a system, so as to increase the reliability of the system. Although full-scan is a widely adopted design-for-testability technique for LSI design and testing, there is a strong need to reduce the test data Volume, scan-in Power dissipation, and test application Time (VPT) of full-scan testing. Based on the analysis of the characteristics of the variable-to-fixed run-length coding technique and the random access scan architecture, this paper presents a novel design scheme to tackle all VPT issues simultaneously. Experimental results on ISCAS'89 benchmarks have shown on average 51.2%, 99.5%, 99.3%, and 85.5% reduction effects in test data volume, average scan-in power dissipation, peak scan-in power dissipation, and test application time, respectively.
Yumei WANG Jiawei LIANG Hao WANG Eiji OKI Lin ZHANG
In 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) systems, when HARQ (Hybrid Automatic Repeat request) retransmission is invoked, the data at the transmitter are retransmitted randomly or sequentially regardless of their relationship to the wrongly decoded data. Such practice is inefficient since precious transmission resources will be spent to retransmit data that may be of no use in error correction at the receiver. This paper proposes an incremental redundancy HARQ scheme based on Error Position Estimating Coding (ePec) and LDPC (Low Density Parity Check Code) channel coding, which is called ePec-LDPC HARQ. The proposal is able to feedback the wrongly decoded code blocks within a specific MAC (Media Access Control) PDU (Protocol Data Unit) from the receiver. The transmitter gets the feedback information and then performs targeted retransmission. That is, only the data related to the wrongly decoded code blocks are retransmitted, which can improve the retransmission efficiency and thus reduce the retransmission overload. An enhanced incremental redundancy LDPC coding approach, called EIR-LDPC, together with a physical layer framing method, is developed to implement ePec-LDPC HARQ. Performance evaluations show that ePec-LDPC HARQ reduces the overall transmission resources by 15% compared to a conventional LDPC HARQ scheme. Moreover, the average retransmission times of each MAC PDU and the transmission delay are also reduced considerably.
In the framework of the modernization plan of COMPASS system, the existing COMPASS signals should be transmitted along with the modernized signals to maintain backward compatibility. In this paper, an efficient multiplexing scheme based on the optimal aligning method for combining COMPASS Phase II B3 and Phase III B3 signals is proposed, which offers significantly higher efficiency than Interplex and Generalized Majority Voting (GMV) multiplexing methods. The proposed scheme can provide potential opportunities for COMPASS system and other global navigation satellite systems (GNSS) modernization and construction plans.
Cheng-Wei QIU Hai-Ying YAO Shah-Nawaz BUROKUR Said ZOUHDI Le-Wei LI
Electromagnetic scattering properties of metamaterial cylinders due to a line source are studied by a multilayer algorithm based on eigenfunctional expansion. Closed forms of electric and magnetic fields are formulated. Both the fields inside the cylinder and field in outer space are plotted for different sizes of the cylinder. The focusing phenomena and the wave propagation in the presence of metamaterial cylinders are investigated and shown. Electromagnetic field distributions are presented for subwavelength metamaterial cylinders and cylinders fabricated by magnetoelectric materials, and resonant scattering and focusing properties are reported. Special designs of scatterer cloaking are proposed and calculated by multilayer algorithm which can reduce scattering cross sections.
Jianfeng XU Hong LI Wen-Yan YIN Junfa MAO Le-Wei LI
The element-by-element finite element method (EBE-FEM) combined with the preconditioned conjugate gradient (PCG) technique is employed in this paper to calculate the coupling capacitances of multi-level high-density three-dimensional interconnects (3DIs). All capacitive coupling 3DIs can be captured, with the effects of all geometric and physical parameters taken into account. It is numerically demonstrated that with this hybrid method in the extraction of capacitances, an effective and accurate convergent solution to the Laplace equation can be obtained, with less memory and CPU time required, as compared to the results obtained by using the commercial FEM software of either MAXWELL 3D or ANSYS.
Wei LIU Toshihiko KATO Seiji UENO Shuichi ITOH
Resulting from the spread of Mobile Internet, the mobile communication with QoS guarantee will be required in order to realize mobile video interactions. So far, there are some studies focusing on QoS Mobile IP communication, but they require backbone routers to maintain per-flow QoS information for all individual Mobile Nodes. So these approaches suffer from the lack of scalability. Against them, we are developing an approach which the per-flow QoS information is maintained only by Mobile IP agents such as the Home Agent and the Foreign Agent. We have adopted a hierarchical method with MPLS which MPLS paths with large bandwidth are introduced between Mobile IP related nodes, and a per-flow path with small bandwidth called Pathlet is established for individual communication between a Mobile Node and a Fixed Host. The maintenance of Pathlets is only performed by Home Agent, Foreign Agent and Fixed Host, and the network backbone MPLS routers only take care of MPLS paths with large bandwidth. In the simulation, we compare our scheme with conventional scheme by observing the total number of entries managed by routers and bandwidth prepared at individual links.
Jianwei LIU Hongli LIU Xuefeng NI Ziji MA Chao WANG Xun SHAO
Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.
Hanchao ZHOU Ning ZHU Wei LI Zibo ZHOU Ning LI Junyan REN
A monolithic frequency synthesizer with wide tuning range, low phase noise and spurs was realized in 0.13,$mu$m CMOS technology. It consists of an analog PLL, a harmonic-rejection mixer and injection-locked frequency doublers to cover the whole 6--18,GHz frequency range. To achieve a low phase noise performance, a sub-sampling PLL with non-dividers was employed. The synthesizer can achieve phase noise $-$113.7,dBc/Hz@100,kHz in the best case and the reference spur is below $-$60,dBc. The core of the synthesizer consumes about 110,mA*1.2,V.
Jianfeng XU Wen-Yan YIN Junfa MAO Le-Wei LI
In this paper, the thermal characteristic of the GaN HFETs has been analyzed using the hybrid finite element method (FEM). Both the steady and transient state thermal operations are quantitatively studied with the effects of temperature-dependent thermal conductivities of GaN and the substrate materials properly treated. The temperature distribution and the maximum temperatures of the HFETs operated under excitations of continuous-waves (CW) and pulsed-waves (PW) including double exponential shape PW such as electromagnetic pulse (EMP) and ultra-wideband (UWB) signal are studied and compared.